Optogenetic hardware and systems for control of neural circuits and biological functions with light

The brain is a densely wired, heterogeneous circuit made out of perhaps thousands of different kinds of cells. Over the last several years we have developed a set of "optogenetic" reagents, fully genetically encoded reagents that, when targeted to specific cells, enable their physiology to be controlled via light. To confront the 3-dimensional complexity of the living brain, enabling the analysis of the circuits that causally drive or support specific neural computations and behaviors, our lab and our collaborators have developed hardware for delivery of light into the brain, enabling control of complexly shaped neural circuits, as well as the ability to combinatorially activate and silence neural activity in distributed neural circuits. These technologies, including microfabricated arrays of waveguides that can deliver light into the brain in a 3-D fashion, wirelessly powered and controlled arrays of LEDs coupled to optical fibers, technologies for activating and silencing neurons in an MRI-compatible fashion, and others, are opening up the ability to discover, or screen for in a high-throughput fashion, new neural targets that can serve as candidates for the treatment of brain disorders. We and our collaborators have also developed accessory technologies, such as light-proof neural recording electrodes, and injector arrays capable of delivering viruses encoding for light-activated molecules into multiple sites in the brain. We anticipate that these tools will enable the systematic analysis of the brain circuits that mechanistically and causally contribute to specific behaviors and pathologies. We distribute these tools as freely as is feasible to researchers -- see the "Resources" pages below for up-to- date descriptions of, and the "Publications" pages for detailed designs and examples of, these tools.