Automated in vivo patch clamp evaluation of extracellular multielectrode array spike recording capability

AUTHORS
Brian D. Allen¹, Caroline Moore-Kochlacs¹,², Jacob G. Bernstein¹, Justin P. Kinney¹,³, Jorg Scholvin¹, Luís F. Seoane⁴, Chris Chronopoulos³, Charlie Lamantia³, Suhasa B. Kodandaramaiah¹,⁵, Max Tegmark⁴*, Edward S. Boyden¹*

AFFILIATIONS
¹Media Lab, McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, and Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.

²Department of Neuroscience, Boston University, Boston, MA, USA.

³Leaflabs, LLC, Cambridge, MA, USA.

⁴Department of Physics and Kavli Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.

⁵Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA.

*Correspondence to tegmark@mit.edu and esb@media.mit.edu

RUNNING HEAD
Automated in vivo evaluation of multielectrode arrays

KEYWORDS
Patch clamp; spike sorting; action potential; multielectrode array; bursting

ADDRESS FOR CORRESPONDENCE
Edward Boyden
Media Lab, McGovern Institute, Center for Neurobiological Engineering, and Koch Institute Departments of Biological Engineering and Brain and Cognitive Sciences Massachusetts Institute of Technology
E15-485, 20 Ames St., Cambridge, MA 02139
e-mail - esb@media.mit.edu
phone - (617) 324-3085

ABSTRACT (250 words)
Much innovation is currently aimed at improving the number, density, and geometry of electrodes on extracellular multielectrode arrays for in vivo recording of neural activity in the mammalian brain. To choose a multielectrode array configuration for a given neuroscience purpose, or to reveal design principles of future multielectrode arrays, it would be useful to have a systematic way of evaluating the spike recording capability of such arrays. We here describe an automated system that performs robotic patch clamp
recording of a neuron being simultaneously recorded via an extracellular multielectrode array. By recording a patch clamp dataset from a neuron while acquiring extracellular recordings from the same neuron, we can evaluate how well the extracellular multielectrode array captures the spiking information from that neuron. To demonstrate the utility of our system, we show that it can provide data from the mammalian cortex to evaluate how the spike sorting performance of a close-packed extracellular multielectrode array is affected by bursting, which alters the shape and amplitude of spikes in a train. We also introduce an algorithmic framework to help evaluate how the number of electrodes in a multielectrode array affects spike sorting, examining how adding more electrodes yields data that can be sorted more easily. Our automated methodology may thus help with the evaluation of new electrode designs and configurations, providing empirical guidance on the kinds of electrodes that will be optimal for different brain regions, cell types, and species, for improving the accuracy of spike sorting.

NEW AND NOTEWORTHY (50 words)
We present an automated strategy for evaluating the spike recording performance of an extracellular multielectrode array, by enabling simultaneous recording of a neuron with both such an array and with patch clamp. We use our robot, and accompanying algorithms, to evaluate the performance of multielectrode arrays on supporting spike sorting.

INTRODUCTION

Much current effort focuses on scaling up the number of neurons being simultaneously recorded with extracellular multielectrode arrays in the living mammalian brain, with new technologies potentially capable of recording thousands, and someday perhaps even millions, of individual neurons (Neto et al., 2016; Scholvin et al., 2016; Lopez et al., 2017; Rios et al., 2016; Shobe et al., 2015; Berenyi et al., 2014). An open question is what parameters—electrode number, density, geometry—of these multielectrode arrays are most important for supporting accurate interpretation of the resulting datasets. For example, one widespread hope is that increasing the density or number of electrodes on such an array may facilitate spike sorting, the process of assigning extracellular spikes to the neurons that generated them (for a review, see Einevoll et al., 2012). Spike sorting can be facilitated when multiple electrodes sense the spikes of a given neuron—i.e. if there is "spatial oversampling" (Scholvin et al., 2016) of the relevant signals, which enables data processing via a number of approaches including clustering and triangulation (for a review, see Buzsáki, 2004), blind source separation (Takahashi and Sakurai, 2005; Hill et al., 2010; Jackel et al., 2012; Leibig et al., 2016), and template matching (Pachitariu et al., 2016; Franke et al., 2015, 2010; Vollgraf and Obermayer, 2006; Roberts and Hartline, 1975). Spatial oversampling is a feature of many neural recording strategies, including stereotrodes (McNaughton et al., 1983) and tetrodes (O'Keefe and Recce, 1993; Wilson and McNaughton, 1993; Henze et al., 2000; Harris et al., 2000) as well as silicon-based arrays of tens or hundreds of electrodes (Blanche et al., 2005; Neto et al., 2016; Anastassiou et al., 2015; Scholvin et al., 2016; Lopez et al., 2017; Rios et al., 2016; Shobe et al., 2015; Berenyi et al., 2014). However, while increasing spatial oversampling by using very dense arrays could in principle boost the performance of spike sorting, it would also increase manufacturing cost, operating complexity, and data storage and analysis costs.
Furthermore, there might be fundamental properties of recorded spikes that could confound spike sorting regardless of electrode sophistication.

To help make it easy to evaluate the spike recording performance of a given electrode array, and to enable systematic analysis of design principles of multielectrode arrays, we developed an automated strategy for collecting a “ground truth” recording of a single neuron, via automatic patch clamp recording in vivo (Kodandaramaiah et al., 2016), at the same time that the neuron is recorded by a given extracellular array - in our case, an array of close-packed extracellular electrodes that we fabricated, with pads just a few microns apart, for dense spatial oversampling (Scholvin et al., 2016). We used such an array to densely survey signals in a volume of brain tissue, allowing detailed analysis of the information added by such closely packed electrodes in the service of spike sorting. Thus, the patch clamp recording would yield spikes of only a single neuron, while that neuron’s spikes and those of other nearby neurons would be mixed together to result in the signals picked up on the extracellular electrodes. Our automated system brings the patch pipette and the extracellular electrode array into close registration to each other, important for obtaining simultaneous recordings on each of a single neuron, while avoiding collisions. A key insight was that by broadcasting a voltage from the patch pipette, and recording it on the electrode array, we could halt pipette movement before a collision with the electrode array, important for achieving simultaneous dual recordings without electrode damage.

We demonstrated the utility of our robot by performing 51 recordings in the primary visual cortex of 19 anesthetized (0.5%-1.2% isoflurane) mice, 2 of which were allowed to wake up during the recording session. Twenty-nine recordings had mean extracellular spike amplitudes of the patched neuron greater than 15μV, which was also at least one median absolute deviation (MAD) above the average of the extracellular trace of each particular recording (in the spike sorting literature, MAD is also called standard deviation of the noise (Quiroga et al., 2004)). We selected the 12 recordings with the greatest such amplitude (with amplitude >50μV) for further analysis in this study, though we note that the other recordings could be useful for studying things not examined here, such as how spike waveform is modulated by neural morphology. These 12 recordings included whole cell (n=10) as well as cell-attached (n=2) recordings.

As a test case, we examined the capability of our chosen electrode array to accurately report spikes during a burst, by comparing extracellular spikes to the patch data. Bursting may modulate spike amplitude and shape (Connors et al., 1982; Fee et al., 1996) and confound spike sorting (Lewicki, 1998; Harris et al., 2000). We examined neurons putatively in cortical layers 2/3 and 5 and used the patch recording to measure the changes in extracellular amplitude and spike half-width during bursting, assessing the detectability of such spikes on the extracellular electrode array by plotting the partial receiver-operating characteristic (PROC) curve and its associated partial area under the curve (PAUC; Krzanowski and Hand, 2009), for a simple but intuitive thresholding strategy. As expected, extracellular electrodes struggled to report burst spikes that decreased in amplitude: we found a significant PAUC improvement when burst spikes were removed from the analysis, which was most notable in recordings of putative layer 5 neurons.
We next aimed to evaluate the potential that increasing numbers of electrodes might have for improving spike sorting performance. We wanted to develop an assessment of potential spike sorting performance that was fully automated and scalable to arbitrary numbers of electrodes and electrode densities, so we devised a method for calculating an intracellular voltage estimator from a specified subset of the available extracellular voltage traces. By using this intracellular voltage estimator to perform spike detection, and calculating the PAUC, we could estimate the potential spike sorting performance of a given electrode array. In the case of our given multielectrode array, we found that increasing the number of electrodes helped, as expected.

The design of our intracellular voltage estimator bears some discussion. Our first step was to derive a transformation (mathematically speaking, a convolution) between the intracellular and extracellular spike waveforms, minimizing the mean-square error to derive the transformation. This approach is reminiscent of the approach of Freygang and Frank 1959, who designed an "equivalence circuit" that transformed a recorded intracellular voltage into a signal resembling a simultaneously-recorded extracellular voltage. The relationship they derived was dependent on the capacitance of the neuron’s membrane and the resistances of tissue and electrodes. Rather than modeling our system in terms of circuit elements, we derived a minimal mean-squared error transformation between intra- and extracellular voltages in a phenomenological sense, since we were only interested in understanding the quality of our extracellular electrodes' reporting capability. (Our model assumes linear-time-invariance of the system.) Once we derived this relationship for each electrode, in the form of a filter kernel, we convolved the extracellular voltage traces with the filter kernel and asked how well the intracellular voltage could be modeled using extracellular voltages from varying numbers of electrodes. We linearly regressed the thus-convolved extracellular voltages against the actual intracellular voltage, yielding an intracellular voltage estimator. We then used the same thresholding framework that we had previously used to evaluate bursting on a single electrode (above), on this intracellular voltage estimator. We found that potential spike sorting performance varied with electrode density and recording volume, with the best performance being achieved at the fullest density of our electrode arrays. These results may motivate the design of electrode arrays with even higher density electrode packing, and the automated strategy we developed for data collection and analysis may provide a platform for the evaluation of new electrode array designs.

MATERIALS AND METHODS

Electrode array design and preparation

Electrode arrays were designed and constructed at the MIT Microsystems Technology Laboratories. Recording sites were ~9x9μm in size, and spaced 2μm apart, in 2 or 4 columns. Prior to experiments, recording sites were electroplated with the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT), in order to increase signal-to-noise ratio to a target impedance of 400-600kΩ, using 0.5-1nA of constant current for 10-12s. Shorts (defined as having an impedance < 300kΩ) and open circuits (defined as having an impedance that did not drop with electroplating, and was typically >2 MΩ) were identified,
and probes with at least ~90% working electrodes (as defined as not shorted and not open) were selected for use. Only the signals recorded from working electrodes were used for analysis. For a subset of recordings, the back of the electrode array was painted with a fine paint brush with 1% Dil (1,1'-dioctadecyl-3,3',3'tetramethylindocarbocyanine perchlorate; Invitrogen) dissolved in 100% ethanol, and left to dry, to mark the array’s track for histological analysis. For re-use, probes were rinsed with deionized water and cleaned with protease (0.25% trypsin-EDTA, Life Technologies) followed by isopropanol.

Surgical procedures

All animal procedures were approved by the MIT Committee on Animal Care. We performed surgery on male C57Bl/6 mice of 8-12 weeks of age (Taconic) for head plate installation under isoflurane anesthesia (1.5-2.5%) with buprenorphine (0.1mg/kg) and meloxicam (2mg/kg) administered as analgesics. An anesthetized mouse was placed in a stereotax (Kopf), and the scalp was shaved, ophthalmic ointment (Puralube Vet Ointment, Dechra) was applied to the eyes, and iodine solution (Betadine) and 70% ethanol were used to sterilize the surgical area. An incision was made to the scalp, and two self-tapping stainless steel screws with attached stainless steel wires were implanted in the skull over the cerebellum and frontal cortex, to act as electrical references and to provide extra stability for a head plate. The head plate was secured with dental cement (C&B-Metabond), and the exposed skull was covered with a layer of silicon elastomer (Kwikcast, WPI Inc.).

Recordings commenced after 1-5 weeks. For the subset of awake recordings, mice were habituated to head-restraint over 3 days for 15, 30, and then 45 minutes with periodic condensed milk reward. On the day of or before recording, craniotomies were performed under isoflurane anesthesia as before, 200-300μm diameter circular craniotomies were performed stereotaxically either with a hand drill or with our robotic system for making automated craniotomies (Pak et al., 2015). Coordinates for the electrode array were [-2.8mm anterior/posterior, 3.0mm medial/lateral] for motor-controlled (Thorlabs) probe insertion perpendicular to the brain surface (~23 degrees from vertical) of the primary visual cortex (V1) to a final tip depth of 543μm for the 64-channel recording included in this study, spanning layer 2/3, or 960-1000μm for the 128 and 256-channel recordings, spanning layers 2-5 (Fig. 1A). Craniotomies for pipette insertion were located 500μm or 1000μm medial to the electrode array craniotomy, for targeting layer 2/3 or 5, respectively, with a pipette angled at 35-40 degrees from vertical (Fig. 1A). Craniotomies were periodically doused with saline or lactated Ringer’s solution to prevent dehydration, and were covered with silicone elastomer (Kwikcast, WPI Inc.) post-experiment.

Recording session preparation

In preparation for a particular recording session, a mouse was initially anesthetized with 2-5% isoflurane in an induction chamber and affixed by its head plate to a metal holder, with its body snugly inside a 3D-printed tube. A fluidic heating pad was placed in contact with the tube to maintain core body temperature. A cone was placed over the nose for continuous delivery of isoflurane anesthesia. A thin layer of eye lube (Puralube by Dechra, or Lacri-Lube by Refresh) was placed over the eyes to maintain moisture. For anesthetized
recording sessions, isoflurane was tuned to 0.5-1.2%. For an awake session, a mouse anesthetized as above was woken up by the cessation of isoflurane delivery. Electrical ground was shared between the patch and electrode array recording apparatuses through a silver chloride pellet placed above the skull in saline or lactated Ringer’s solution. The electrical reference for the electrode array recording was connected to either the cerebellum or cortex skull screw wire. The electrode array was then inserted at a rate of roughly 5μm/s to its target depth.

Recording session

Once the electrode array was inserted, one or several successive attempts at automated patch clamp recording commenced after 10 minutes or so. Patch clamp recordings were performed using the robotic autopatcher system (Kodandaramaiah et al., 2012). Standard intracellular solution was prepared as described in Kodandaramaiah et al., 2016, with 0.4% biocytin (w/v; Sigma), 135mM potassium gluconate, 0.1mM CaCl2, 0.6mM MgCl2, 1mM EGTA, 10mM HEPES, 4mM Mg-ATP, 0.4mM Na-GTP, 8mM NaCl, with dropwise addition of 5M KOH to adjust the pH to 7.2, and addition of potassium gluconate in increments of 25mg until the final osmolarity reached 290-295 mOsm. Pipettes of 1.2mm outer diameter (Warner Instruments #G120-4) were pulled to 4.5-8MΩ resistance with either a Flaming-Brown puller (Sutter P-97) or a gravity puller (Narishige PC-10).

The autopatching sessions began with insertion of a pipette into the brain under positive pressure, to avoid clogging, to a stereotaxically estimated depth of 150-200μm from the target region. The target region was defined as the part of the electrode array that was in the desired cell layer.

For avoiding collisions between the pipette tip and electrode array, we Fourier transformed the 100mV square wave (20Hz) pulses applied to the pipette tip, and sensed on each electrode of the extracellular multielectrode array. We then fit the amplitude of the 20Hz bin versus electrode position within the array with a 5-parameter model of 1/r voltage falloff, using MATLAB’s curve fitting toolbox. This model took advantage of the known spacing of the electrodes. Three parameters were for 3-D position, with one parameter as an overall proportionality constant, and one for added noise (the noise factor significantly improved fits, because signal strength did not decay towards zero).

During autopatcher operation, if a seal was formed but a membrane break-in was not achieved through pulses of suction or a brief voltage pulse, the neuron was recorded from in cell-attached mode (n=2 of the 12 recordings chosen for further analysis in figures 2-5), in the current clamp configuration (with no current injected). If a break-in was achieved and a whole cell recording begun, the patching system was switched to current clamp mode, where 1s long hyperpolarizing and depolarizing current steps were injected to measure cell electrical properties and spiking threshold for a subset of the recordings chosen for further analysis in figures 2-5 (n = 6 recordings). Regardless of whether the recording was cell-attached or whole cell, a visual stimulus, as described below, was then played to elicit activity.
Because our focus was on demonstrating the utility of our system, and not on characterizing natural neural responses to stimuli, since one neuron ("Neuron 12" in Fig. 2C) in the whole cell configuration did not initially exhibit spiking in response to visual stimuli, 50pA of steady state current was injected, resulting in spiking. One neuron ("Neuron 6" in Fig. 2C) in the whole cell configuration was initially injected with 100pA of steady state current for an entire ~7.6 minute visual stimulus presentation, by mistake. The neuron was subsequently recorded from during another visual stimulus presentation, and this latter recording is the one included in the data presented here.

Recording selection and explanation

For the analyses in figures 2-5, we focused on the 12 recordings that exhibited the highest mean, non-burst extracellular spike amplitude (>50uV) on the electrode with the greatest such spike amplitude (which we informally refer to as the "closest electrode", although of course we do not know for sure which electrode is physically closest to the neuron being patched), which happened to correspond to the 12 recordings with the greatest signal-to-noise ratio on the "closest electrode" (>5). In this paper, we define signal-to-noise ratio (SNR) as the mean non-burst spike amplitude divided by the median absolute deviation (MAD). MAD is the statistical measure we use for the noise of an extracellular trace; we use the version of MAD that is an unbiased estimator for the standard deviation for normal data, which is defined as the median of the absolute value of the trace divided by 0.6745 (after the trace is median subtracted). MAD is a robust statistic because it is not greatly influenced by outliers, e.g. spikes. (In previous extracellular literature, MAD is sometimes referred to as the "standard deviation of the noise", e.g. in Quiroga et al., 2004.) In contrast, the standard deviation of an extracellular trace is dependent on both noise level and spiking characteristics. Specifically, the standard deviation of an extracellular trace will increase with spike amplitude and spike rate. For those who are more familiar with using standard deviation to measure the dispersion of an extracellular trace, we note that, in practice, MAD ranged from 1-2x the standard deviation of a trace (mean 1.2x).

Mean extracellular waveforms were calculated as follows: snapshots of bandpass-filtered (2nd-order IIR Butterworth, 100-6000Hz) voltage were triggered off of the timing of each patch-reported spike time (patch-reported spike times were defined as the time of the peak of the derivative of the patch-measured spike). These snapshots were averaged for each electrode, yielding one mean spike waveform for each electrode (e.g. Fig. 2A, right and Fig. 2B right). The amplitude of the spike was then determined by finding the maximum voltage deflection from zero; in practice this was usually the absolute value of the spike’s trough.

Three patch recordings were obtained in the same mouse and target cell layer in which a previous recording had taken place (the electrode array remained in the same place between recordings, and a new pipette insertion was made). These later recordings were deemed unlikely to be from the same neurons that were patched earlier in the session, and in addition the first patching attempt would likely have led to the death of the neuron patched. Consistent with this, the earlier and later recordings differed substantially in either mean extracellular spike amplitude on the “closest electrode,” or firing rate, or both. Specifically, Neuron 2 (numbers as in Fig. 2C and Tables) and Neuron 5 had respective
mean extracellular spike amplitudes and firing rates of -100μV (standard deviation (SD)
31) and 5.2Hz, vs. -82μV (SD 27) and 19Hz. Neuron 7 and Neuron 11 had respective mean
extracellular spike amplitudes and firing rates of -81μV (SD48) and 10.2Hz, vs. -66μV
(SD35) and 6.5Hz. Neuron 8 and Neuron 10 had respective mean extracellular spike
amplitudes and firing rates of -65μV (SD10) and 1.8Hz vs. -57μV (SD9) and 0.17Hz.

Visual stimulus

A small (4 x 6") LCD screen was placed at a roughly 45 degree angle with respect to the
mouse’s anteroposterior axis, in the mouse’s right visual field. Roughly 7.6 minutes of a
visual stimulus were presented, consisting of sinusoidal drifting gratings (generated with
Psychtoolbox) and/or a natural scene of reeds blowing in the wind (from the Chicago
Motion Database, courtesy of Stephanie Palmer’s lab, University of Chicago) to elicit neural
activity. The drifting grating presentation consisted of 10s of grey screen, followed by the
presentation of a sinusoidal drifting grating of a particular orientation (12 different
orientations separated by 30 degrees each, 1 cycle per second, 1/720 cycles per pixel) for 2
seconds, followed by 1s of grey screen, with each orientation (and subsequent gray screen)
repeated 12 times in a pseudorandom fashion. A photodiode was placed in the lower left of
the LCD screen and was digitized along with the patch signal, for synchronization. A typical
recording session consisted of one or more 7.6 minute presentations in succession. For
neurons in which the drifting gratings and natural scene were presented in succession, the
recording that exhibited the greatest mean extracellular spike amplitude (as explained in
the previous subsection) was analyzed, with the exception of one recording that had the
greatest spike amplitude but appeared to exhibit drift in its extracellular signal (that is, the
extracellular spike amplitude decreased over time throughout the recording, though this
was not quantified in detail). The absolute value of the difference of the mean spike
amplitude between multiple recordings of the same neuron was on average 7.4% (SD4.1;
N=7 neurons from 5 mice).

Data acquisition and processing

For a subset of recordings (n=5), separate systems were used to acquire signals from the
patch clamp pipette (pClamp software with Multiclamp 700B amplifier, Molecular Devices
CV-7B headstage amplifier, and DigiData 1440A for digitization) and electrode array (Intan
RHD2000 evaluation system), each using a sampling rate of 25kHz. To account for potential
clock drift, a 25Hz, square wave synchronization pulse was recorded by both systems, for
post-hoc temporal alignment. The rest of the extracellular array recordings (n=7) were
acquired with a direct-to-drive data acquisition system (Willow system, LeafLabs; Kinney
et al., 2015) at 30kHz simultaneously with the patch clamp signal acquired on the
Multiclamp as before and routed for synchronized digitization with the electrode array
signals. For our spike sorting-style analyses, both the patch clamp and electrode
("extracellular") data were initially bandpass filtered from 100-6000Hz (2nd-order
Butterworth IIR), in order to isolate the spikes in the signal.

Spike detection on the patch recordings was performed as follows. For whole cell
recordings, spikes were detected by threshold crossing, usually set halfway between the
spike peak and resting potential. Spike thresholds were increased as necessary, if the membrane did not fall below the original threshold during bursts. Cell-attached recordings were noisier than whole cell recordings. For cell-attached recordings, we used the peak of the derivative of the voltage (rather than the voltage itself), which allowed for easier discrimination of spikes over noise. We applied a matched filter to enhance the waveforms corresponding to the derivatives of the cell-attached voltage, and to suppress spurious spikes resulting from signal jumps across two time bins (a phenomenon occasionally observed in cell-attached but not whole cell recordings, presumably an artifact of motion). The timing of the patch-reported spikes ("patch spike times" for short) of both whole cell or cell-attached recordings was calculated by taking the time of the maximum of the derivative of each spike. This was chosen because the derivative of an intracellular voltage has been previously demonstrated to relate to the rising phase of the extracellularly measured spike voltage (Freygang and Frank, 1959; Henze et al., 2000; Anastassiou et al., 2015). In practice, there was typically less variability in the timing of the intracellular derivative maximum relative to the extracellular spike trough than with the timing of the raw intracellular waveform maximum relative to the extracellular spike trough. Once we had spike times, bursts were identified for each neuron. A spike was considered within a burst if it occurred within 20ms after an earlier spike, a criterion used, for example, in Staba et al., 2002. Each spike in a burst was numbered.

For the descriptive analyses of the extracellular correlates of intracellular spikes (Fig. 3B, bottom, Fig. 4E, bottom, Fig. 4H, bottom, Table 2), extracellular spike amplitude was calculated as the minimum extracellular voltage (bandpass filtered from 100-6000Hz with a 2nd-order Butterworth IIR) within ± 1 millisecond of each patch spike time. The extracellular recording of neuron 4 had large artifacts, presumably due to motion, so values reported in tables 1 and 2 were post-mean subtraction (as described in next section; table values for other neurons were pre-mean subtraction).

Detection and classification analyses

For analyses of the how well spikes can be detected and classified in the extracellular traces, we first bandpass filtered the extracellular traces from 100-6000Hz (2nd-order Butterworth IIR) and performed a mean subtraction to remove potential artifacts that were shared across electrodes. Specifically, we calculated the mean time series trace across all recording sites (mean of each voltage at a particular time point, calculated for all time points), $\text{trace}_{\text{mean}}$, then multiplied it times a weight of magnitude m_i, and subtracted it from the trace of each individual recording site, trace_i. The magnitude m_i was calculated as $m_i = (\text{trace}_{\text{mean}} \cdot \text{trace}_i)/(\text{trace}_{\text{mean}} \cdot \text{trace}_{\text{mean}})$, similar to Ludwig et al., 2009. These traces were multiplied by -1, so that spike deflections would be in the positive direction.

Thresholds are often used in various forms of spike sorting, with the choice of threshold representing a trade-off between letting in false positive spikes and losing false negative spikes. For this paper, we wanted to present a general methodology for evaluating spike sorting quality of a given electrode array, which emphasized intuition, so we varied thresholds systematically rather than picking a single threshold. Then, we used receiver-
operator characteristic (ROC) analyses, standard statistical analyses for binary classifiers. We performed these analyses on both the pre-processed extracellular traces and the intracellular voltage estimators we developed (and which are described in the subsequent subsection).

ROC analyses look at the tradeoff between false negatives and false positives across a range of thresholds. For an analysis with \(N = 100 \) thresholds, we collected the set of deflections above the threshold \(\theta_i \), with \(i \in [1, \ldots, 100] \), calculating the values of \(\theta_i \) as described below. Then, for each deflection, we recorded the value and time of the deflection peak. For the intracellular voltage estimator (see below), deflections were collected from the estimator (for cell-attached recordings) or the derivative of the estimator (for whole cell recordings), in order to make such traces more similar to the bandpass-filtered extracellular voltages or to the intracellular traces as we processed them for spike time extraction. We set our minimum threshold to two times the median absolute deviation, \(\theta_1 = 2 \times \text{MAD} \), to capture low amplitude spikes. (We find that at worst, this threshold finds 97% of the patched neuron’s spikes (Neuron 7, 141/4640 spikes missed, Tables 1, “Spike count/all” and Table 2, “<2*MAD”) and more commonly 0 or <10 spikes are missed by this threshold (see column “<2*MAD” in Table 2).) Our maximum threshold, \(\theta_N \) was set to the maximum of the extracellular trace or the estimator (for cell-attached recordings) or the derivative of the estimator (for whole cell recordings). The rest of the thresholds were spaced evenly between \(\theta_1 \) and \(\theta_N \). These sets of deflections may include spikes from the patched neuron, spikes from other neurons, and noise deflections.

For a given threshold level, deflections derived as above were defined as true positives (\(TP \)) or false positives (\(FP \)) by comparing their timing to ground truth patch spike times as follows: We iterated over the patch spike times, and whenever there was a deflection within \(\pm 1 \) ms of a given patch spike time, \(TP \) was increased by 1. After this process was complete, the remaining deflections which had not been classified as \(TP \), were defined as \(FP \) (i.e. \(FP = \text{signal spike times} - TP \)). Histograms of the number of \(TP \) and \(FP \) for extracellular traces by amplitude (threshold) can be found in figures 3D, 4F/I where \(TP \) are split into burst and non-burst spikes (yellow and gray respectively) and \(FP \) are labeled “other deflections” (green). (Note that for these plots, mean subtraction was not performed.)

Next, true positive rate (also known as sensitivity) was calculated by dividing \(TP \) by the total number of patch spike times. When true positive rate is 1 there are no false negatives, i.e. no missed ground truth spikes. ROC analyses most commonly plot the true positive rate vs. the false positive rate, where the false positive rate is \(FP/\text{total negatives} \). However, by setting our minimum threshold very low, there were 10s of 1000s of FPS at lower thresholds (note the y-axis break in figures 3D, 4F/I). We were interested in threshold-style spike sorting performance at thresholds before the \(FP \) overwhelmed the \(TP \) and thus focused our analysis on the partial ROC (PROC) limiting the analysis to when \(FP \leq \text{total number of patch spike times} \). We normalized \(FP \) by the total number of patch spike times to aid in comparison across recordings. When \(FP/\text{total spikes} = 0 \), there are no \(FP \), and when \(FP/\text{total spikes} = 1 \), there were as many deflections in the signal that didn’t match the ground truth spikes as there were ground truth spikes. \(FP/\text{total spikes} \) is related to the false positive rate by a constant: \(FP/\text{total spikes} = \text{total negatives/total spikes} \times \text{false positive rate} \).
rate.) As we iterated across threshold levels, the tradeoff between TP rate and FP/total spikes was summarized by the PROC curve, with TP rate and FP/total spikes plotted on the vertical and horizontal axes, respectively (e.g. Fig. 3C, solid black curve).

In order to analyze the effect of bursting on spike sorting, PROC curves were generated in the following fashion: FP values were calculated as in the previous paragraph, but TP values were calculated after removing the times of burst spikes from patch spike times ("non-burst patch spike times"), and calculating true positive rate by dividing by the number of non-burst patch spike times (e.g. Fig. 3C, dotted black curve). For this analysis and for the generation of all PROC curves in this paper, the "non-burst spikes" group includes the 1st spike in any burst, as well as spikes not within bursts.

The PROC curve is summarized by the partial area under the PROC curve (PAUC; Krzanowski and Hand, 2009), where FP/total patch spikes ∈ [0, 1] (e.g. Fig. 4A) and captures in a single number the possible performance of a given electrode array, for a given neuron, in terms of spike detection across thresholds. If many TP can be detected before a substantial number of FP are detected, the PROC will rise steeply and the PAUC will be large. An PAUC of 1 indicates that a threshold exists such that there is perfect classification, i.e. no FP or FN.

Intracellular voltage estimator

Given that our automated system acquires ground truth patch data, we wanted to utilize these data in an automated method to evaluate the potential performance of spike sorting for different electrode array configurations. We used the known patch voltage as our transformation target as it contains large, detectable deflections at the patched spike times. Because the frequency content and timing of patch vs. extracellular spike waveforms are different from each other (and in fact varies from extracellular electrode to electrode, see Fig. 2A, B, C, as well as Gold et al., 2006), we first needed to find filter kernels with which to convolve the extracellular traces, which would transform the frequencies and timing of the extracellular spike traces into those of the patch trace. Once we had convolved the extracellular traces with these kernels, we regressed these convolved extracellular voltage traces against the intracellular trace to create intracellular voltage estimators.

In outline, we modeled our estimate of the intracellular voltage as an extracellular voltage convolved with a filter kernel plus noise (see Appendix for detail). Because of the convolution theorem, we could transform our equation to Fourier space, which simplifies it into the familiar equation of a line. We could then perform simple linear regression to derive the slope separately for each frequency, and inverse Fourier transform the equation to reveal our minimal mean-squared error kernel (example in Fig 5B, Step 1).

The process was as follows: (0) Data was pre-processed: Both the extracellular voltage traces and patch clamp voltage trace were filtered (bandpass, 2nd-order IIR Butterworth, 100-6000Hz) to remove non-spike information. The extracellular voltage traces were mean-subtracted with respect to the other working electrodes (as described in the section "Detection and classification analyses") and then zeroed out everywhere but ± 4ms from...
the patch spike times. (1) The zeroed and filtered extracellular traces and filtered patch
trace were then Fourier transformed in bins of 512 time points, which overlapped twofold
and were apodized with a Blackman window. This bin value, which corresponds to 17ms
for a recording sampled at 30kHz, or 20ms for a recording sampled at 25kHz, was chosen
to conservatively encompass spike waveforms and capture rich frequency information. For
each extracellular trace, a separate simple linear regression was then performed for each
frequency between these signals (extracellular and intracellular), and the resulting
regression coefficients were inverse Fourier transformed to obtain the convolution filter
kernel (example in Fig 5B, Step 1). (2) The kernels were applied to their respective filtered
extracellular voltage traces (not the selectively zeroed time series) (Fig. 5A,B, Step 2). (3)
The resulting convolved traces from some specified n extracellular traces were regressed
on the intracellular voltage trace (Fig. 5A&B, Step 3) creating new estimators. Spike
detection and classification was performed on these intracellular voltage estimators as
described in the previous section.

Histology

Of the 16 recordings made utilizing the pipette location model, 3 were performed in mice
where only a single whole cell recording was made; the brains of these mice were selected
for histological analysis. Of these 3 brains, 2 appeared to have a single neuron labeled (Fig.
1G), albeit with some background staining, while the signal from a single neuron was not
clear in the 3rd. Brain slices of 40μm were prepared using the protocol of Kodandaramaiah
et al., 2012, performing incubation with streptavidin conjugated to Alexa-488, for
visualization of the biocytin-filled neuron. Slices were imaged with a confocal microscope
(Zeiss) with a 20x lens. Data presented in figure 1G are from maximum intensity
projections of a single brain slice, performed in ImageJ.

Statistics

Statistics were computed using Graphpad Prism 7. For repeated-measures ANOVAs and
Dunnett post-hoc tests, sphericity was assumed ("Repeated measures ANOVA" in Prism 7).
If statistics were rerun without sphericity assumed ("Repeated measures ANOVA with
Geisser-Greenhouse correction" in Prism 7), a Geisser-Greenhouse correction was used,
which generally raised the p-value of both the ANOVA and post-hoc test results. In this
case, the main effect in the ANOVAs of both Fig. 5C and D remained statistically significant
(P = 0.0069 and P = 0.0214, respectively), but the results were altered as follows. The
statistically-significant difference between the full density and quarter density group in Fig.
5C remained, however now with p = 0.0410. The statistically-significant difference between
the 64-electrode and 1, 2, and 4 electrodes remained (p = 0.0345, 0.0479, 0.0306,
respectively), but the 64 versus 8 electrode comparison was no longer significant (p =
0.0719).

Data and analysis sharing
RESULTS

A strategy for dual automated patch clamp and extracellular electrode array recordings in vivo

We developed a way to automatically colocalize a patch pipette for whole cell recording, and an extracellular multielectrode array in vivo (Fig. 1A). Without such a strategy, our initial attempts at dually recording from the same neuron with both a patch pipette and an electrode array were unsuccessful: either the patched neuron was not detectable on the array, or the pipette resistance would precipitously drop (e.g. from 7MOhm to < 3MOhm) while being lowered. We took the latter as evidence that the pipette may have collided with the array. On trials in which that happened, we observed a large 20 Hz square wave signal on one or more electrodes of the array (>200μV, peak-to-peak, after filtering; bandpass, 2nd-order IIR Butterworth, 100-6000Hz) that increased with each pipette step (up to perhaps 1000 μV) just preceding the collision, time-locked to the 10mV 20 Hz square wave being applied to the patch pipette. We hypothesized that by monitoring the patch pipette signal on the electrode array, we could slow down or halt the movement of the pipette in an optimal way, obtaining neurons that were dually recorded, while avoiding patch pipette collision with the electrode array.

In initial testing, our patch pipette emitted 20Hz square wave pulses of ± 10mV, as the autopatcher "hunted" for a neuron by advancing in discrete, 2μm steps, as in the original autopatcher protocol (Fig. 1A; Kodandaramaiah et al., 2012). Because the signal from the pipette was not noticeable on the extracellular signal until a collision was imminent, we increased the pipette square wave amplitude to ± 100mV, which allowed us to sense the signal on the electrode array upon initial pipette insertion, with a pipette tip to electrode array distance that was stereotaxically estimated to be 150-200μm. Once a neuron was detected, the square wave pulses used to measure resistance were lowered back to ± 10mV, the normal range of autopatcher operation.

For some of our 51 recordings (n=35), we estimated when the pipette tip and electrode array were sufficiently close, by a combination of readings from actuators, which may not have been in perfect alignment, and by intuition gleaned from several pipette insertions in which these voltage pulses were sensed as a large (>200μV) and increasing (with each pipette step) signal on at least 1 electrode of the array preceding a collision. Of the 35 recordings obtained in this way, 21 had extracellular spike amplitude > 15μV, and 9 had amplitude > 50μV. With this system we observed 13 pipette to array collisions in addition to the 35 successes, for a collision-free yield of 35/(13+35) = 73%.

For the remaining recordings (n=16), we used a model for predicting collisions, that we developed and then periodically queried during the neuron hunt to stop pipette movement appropriately (Fig. 1B, exemplar recording). To isolate the pipette signal on the electrode
array, we first Fourier transformed the voltage on each electrode and extracted the
amplitude of the 20Hz time bin. We found that the resulting electrode array signals could
be fit with a $1/r$ falloff model (Fig. 1C) when sensed across the electrodes of the array,
consistent with the pipette tip playing the role of a point source in a resistive medium. The
known spacing between the electrodes on the array was used in the model to provide a
calibration of absolute scale, and thus allowed us to infer the absolute distance between the
pipette tip and the electrode array (although this was not validated precisely, and so we
call this distance the inferred distance in this paper). As the pipette advanced toward the
electrode array in 2μm steps, the falloff curve evolved (Fig. 1D), and the R^2 value for the
goodness of fit with a $1/r$ curve was monitored (Fig. 1E). For 4 of 16 recordings, 1 or 2
negative R^2 values were observed, indicating a bad measurement or curve fit, and these
data points were excluded from analysis. These constituted 2/51, 1/24, 1/119, and 1/33
measurements for their respective recordings, for a total of 5 bad data points out of 451
data points when pooled across all 16 recordings (1.1%). We attempted to patch a neuron
if the autopatcher detected one with an inferred distance from the array between ~15 and
~50μm.

Beyond observing high R^2 values, which gives confidence in the model, we did not do any
further calculations in real-time to assess the accuracy of the fit. We did however perform a
post-hoc evaluation of how well the model estimates at each step conformed to a best-fit
line of the trajectory of the pipette in 3-D space as it was advanced into the brain (Fig. 1F
for exemplar, Fig. 1H, top, for population data). While residual error was often in the 5-
10μm range for our recordings (Fig. 1H, top), such as in this example, some fits were
noisier, with occasional jumps in predicted distance of 25μm or higher between 2μm steps
of the pipette (Fig 1G). Histological validation of this system was attempted for 3
recordings, with 2 recordings each yielding 1 neuron labeled and a clearly visible track
from the extracellular probe (Fig. 1G left, and second from left). The final model estimate
corresponded well to the histologically-determined distance between filled neuron and
probe track (40μm versus ~40μm) in the former recording, and less well in the second
recording (55μm versus ~75μm). We note that there were only 4 data points in the latter
recording and sometimes distance estimates appeared to improve as the pipette advanced
towards the array (Fig. 1G, second from right), though this was not always the case (Fig. 1G,
right).

Our methodology may be synergistic with the stereotaxic positioning apparatus recently
reported (Neto et al., 2016). Of the 16 recordings obtained using this system, 8 and 3
neurons had extracellular spike amplitude > 15μV and 50μV, respectively. We detected a
single probe collision after implementation of this system out of 27 trials, but it occurred
before we started to periodically query the model; this was presumably due to a gross
actuator misalignment.

Colocalized recordings: basic properties

We chose the 12 neurons with the largest extracellular amplitude to explore their value in
examining the recording power of a given array, a close-packed electrode array of our
design, with electrodes spaced by just a few microns apart (Scholvin et al., 2016). Such a
close-packed array allowed us to analyze the resulting dense signals and examine how such spatial oversampling strategies might contribute to spike sorting capability. These neurons were recorded in putative (i.e., estimated based upon pipette stereotaxic depth) cortical layer 2/3 (n=5) or layer 5 (n=7) of primary visual cortex in anesthetized (0.5%-1.2% isoflurane), headfixed mice. For 2 of these recordings, isoflurane was turned off after a whole cell patch clamp recording was obtained, and awake recordings took place 15-20 minutes later, well after the animal's first post-recovery whisking motions. (See Table 1.) All recordings were ~7.6 minutes long, and data presented in this paper are from the first 456s of the recording, for comparison across recordings including those that were slightly longer than 456s. The neuron recorded by the patch pipette was localized (Fig. 2A, middle) to the region interrogated by our array of close-packed electrodes (~9x9μm electrodes spaced ~2μm apart, with 64 (n=1), 128 (n=4), or 256-electrode (n=7) counts, arranged in 2 or 4 columns). Ten of our patch recordings were made in the whole cell configuration and 2 were made in cell-attached mode (Table 1, “Type”). When the patched neuron spiked (Fig. 2A, left), these spikes were also sensed by the extracellular electrode array, and the patch-reported spike times were then used to identify the associated extracellular spike waveforms. The mean waveform sensed by each electrode is shown in Fig. 2A, right, averaging over all the extracellular spikes identified by their association with patch-reported spike times. Because waveforms of spikes within a burst may differ significantly from those of non-burst spikes (or the first spike of a burst), later burst spikes (2nd-nth spikes within a burst) were not used when computing the mean waveforms. We defined a burst spike as a spike that occurred within 20ms of the previous spike, a criterion used, for example, in Staba et al., 2002. The plot of mean waveforms across the extracellular electrode array helped visualize the spatial extent of where a patched neuron's waveforms ended up (Fig. 2A, right, generated from 845 spikes; 2B for a neuron recorded in the cell-attached configuration, generated from 199 spikes).

In order to visualize how spike waveforms varied across electrodes in a compact way, we ordered all of the working electrodes (see Methods) for each recording by their mean spike amplitude, from largest to smallest. We then plotted the mean waveforms (excluding spikes within a burst) for the [2^n]th ordered electrode for each patched neuron, where n = {0,1,2,3,4,5} (Fig. 2C), so that the fall off of amplitude across electrodes, thus rank ordered, could be rapidly visualized. Using these close-packed arrays, we found that the spatial extent of the signals picked up from a single neuron typically spanned hundreds of micrometers (Fig. 2A right, 2B). Future colocalized experiments might find that such spatial signatures of neurons are predictive of their locations or cellular properties. Neurons with such a wide spatial extent of extracellular voltage may bias analyses of spike-triggered local field potential (LFP) when their spikes bleed into the LFP frequency spectrum and contaminate the spike-triggered LFP (Ray, 2015). Ray, 2015 reviewed the challenges of spike-triggered LFP based on models. Our colocalized recording technique could enable investigators to empirically examine such phenomena and derive, in the future, best practices for spike-triggered local field potential analysis.

Evaluation of spike detection on the “closest electrode” via simple thresholding
Using this set of 12 recordings, we explored what such colocalized neuron spiking data could reveal about the spike sorting capability of a given multielectrode array. To set the stage, we first defined a few initial terms and analyses. For a given dual recording, we identified the electrode pad with the greatest amplitude spikes that correspond to the patch-reported spikes, which we informally refer to as the “closest electrode”. This is the electrode with the highest amplitude copy of the patched neuron’s spiking activity, and thus is a good place to start when looking for intuitive measures of spike quality. To measure the noise dispersion of an extracellular trace, we use the median absolute deviation (MAD), which unlike standard deviation is not greatly influenced by outliers, e.g. spikes, making it a robust statistic (see Methods for further detail). In previous extracellular literature, MAD is sometimes referred to as the “standard deviation of the noise” (e.g. in Quiroga et al., 2004). In Table 2, we report MAD for the “closest electrode” for each recording (range, 6-14 μV).

Next, we examined the spike amplitude on the “closest electrode” for each recording. In Table 2 we report these amplitudes, split out into non-burst and burst spikes. Non-burst spikes include all spikes not in a burst, as well as the first spikes of bursts. We examined non-burst and burst spikes separately because burst spikes sometimes have lower spike amplitudes than non-burst spikes (discussed in more detail in the next section). The 12 recordings we chose for detailed analysis had mean non-burst spike amplitudes greater than 50μV; the neuron with the highest such amplitude has a non-burst spike amplitude of -267μV (SD124). We calculate the signal-to-noise ratio (SNR) in a robust way, as the mean non-burst spike amplitude divided by MAD, which ranged from 5-19 across these recordings, though this measure is not a full picture of how detectable patched spikes are on the “closest electrode” as many of the spike amplitudes have large variance (see Table 2, “Spike amplitude” columns, standard deviation (SD) values, and amplitude distributions in Fig. 3B and 4E,H).

Having established some basic analyses, we next sought to begin to characterize the spike-sorting capability of a given multielectrode array. An initial step in spike sorting is spike detection, in which potential spikes from extracellular traces are gathered so that they can be categorized as spikes from individual neurons or noise. Most spike sorting algorithms use thresholding for spike detection, which simply and intuitively records all the deflections crossing a particular threshold from an extracellular trace. A multiple of a noise dispersion measure of the trace, usually standard deviation or MAD, is commonly used to set this threshold. A lower threshold is likely to capture more spikes but also may let in many noise deflections that must be correctly identified and categorized as not-spikes in the spike sorting process. We were interested in using our data to describe the impact the initial threshold may have on spike sorting, specifically by looking at the spikes from a single neuron that may be lost in this detection step. A review of the literature found that thresholds were commonly set in the range of 2-6 times the paper’s noise dispersion measure (Quiroga et al., 2004; Rossant et al., 2016; Marre et al., 2012; Swindale and Spacek, 2014; Leibig et al., 2016). Based on these numbers, to quantify potential spikes lost, we look at the spikes in a thresholding range we define as 2-6 * MAD. (The lower bound is set by our minimum analysis threshold of 2 * MAD, see Methods for more details; spike counts “<2*MAD” in Table 2.) In Table 2, in the columns nested under “Thresholding range /
Between 2-6 * MAD we count the number and portion of spikes in this range, split into burst and non-burst spikes. We find that most of our recorded neurons, 8/12, have ≤5% or less of non-burst spikes are in this range. However, three neurons have >30% of their non-burst spikes in this range and one neuron has >60% of its non-burst spikes in this range; these 3 neurons also have three of our four lowest SNRs (Table 2, “SNR”). For some patched neurons, we see a larger portion of the neuron’s burst spikes in the 2-6 * MAD range than non-burst spikes; these neurons have lower amplitude burst spikes than non-burst spikes (see neurons 1, 4, 5 in Table 2, “Portion of spikes” columns). Because we are looking at the extracellular traces from the “closest electrode,” which has the highest amplitude, spikes in this 2-6 * MAD range are unlikely to appear above this range on other extracellular electrodes. Differences in noise on different electrodes will lead to some differences in which spikes cross a given threshold, even if the spike amplitude on another electrode is lower.

These data highlight that spikes will be omitted from spike classification steps of spike sorting, having been lost at the spike detection step, even with the recording advantages of multi-electrode arrays where each recording site is another opportunity to record a neuron’s spikes at a high magnitude or SNR. The set of spikes assigned to each neuron at the end of spike sorting may be incomplete not due to poor categorization but due to the spikes not having been available to categorize. As we see in our demonstration dataset, for some neurons this could be more than half the spikes, which would give a very inaccurate picture of the spiking on that neuron and may lead to major biases in post-spike sorting analyses. This potential loss of spikes in the spike detection step of spike sorting may be partially ameliorated by spike sorting methods that perform spike detection, categorize (or “sort”) those spikes into sets of spikes from individual neurons, and then perform a second detection step on the extracellular traces based on the distributions of spike waveforms found in the sets of sorted spikes (e.g. convolving with a spike waveform template). Colocalized recordings with ground truth spike times are necessary to characterize this issue and design spike sorting methods to handle it accurately.

We are also interested in the number of spikes from other neurons than the patched neuron, which are reported on the “closest electrode.” A particular neuron’s spiking activity may appear with high SNR on an extracellular electrode, with all spikes above the detection threshold, but if one or many other neurons also have high SNR spikes on that electrode, the categorization of spikes from said particular neuron, at least with a simple threshold, may be difficult. To represent how many spikes from other neurons (and noise deflections) are in the same amplitude range as the patched neuron’s spikes, we count all the deflections greater than the mean amplitude minus one standard deviation of the patched neuron’s non-burst spikes (Table 2, “other deflections in spike range”). We see that some recordings have as few as 4 other deflections in spike range whereas others have 10s of 1000s of other deflections in spike range. Thus application of simple thresholds to data jointly acquired from the same neuron, via simultaneous patch and extracellular array recording, can be used to gain some intuition into the frequency of confounds to spike sorting when using an extracellular multielectrode array.

Evaluation of detection and classification of burst spikes via simple thresholding
As another example of an analysis we could do with our system to evaluate a performance characteristic of a given extracellular array, we examined the impact of burst spikes on a simple thresholding model of spike sorting. Nine out of 12 of our patched neurons burst at least 50 times during the 456 s recording session analyzed (Table 1, “burst count”). Bursting is known to modulate spike amplitude and shape in extracellular recordings (Henze et al., 2000), but such changes are difficult to characterize without ground truth spike times because an electrode typically senses the spikes of several neurons in its immediate vicinity. When later spikes in a burst have lower amplitude or a changed shape, they may be classified as spikes from other neurons (as described in Chung et al., 2017) or be lost below the detection threshold. In Table 2, we give the spike amplitudes for burst spikes vs. non-burst spikes. Five of our recordings had a >10 μV difference in mean spike amplitude in burst vs. non-burst spikes. As a metric for the change in spike waveform shape during bursting, we analyzed spike half-width (i.e., the width of the spike at half-maximal spike amplitude) for the mean non-burst spike vs. the mean burst spike, calculating the ratio for each recording (Table 2, “half-width ratio”); values >1 indicate that a burst spike is longer in duration than a non-burst spike. Such changes in spike shape during a burst can result in misclassified or missed spikes.

To more systematically explore how spike amplitude varied with time since the preceding spike, as well as the number of preceding spikes, within a burst, we performed a number of analyses of how these parameters relate to each other. We explain these analyses in the context of an exemplar neuron (Fig. 3; “Neuron 1” in Fig. 2C and Tables), a cortical layer 5 neuron recorded in an awake mouse (that had earlier been anesthetized with isoflurane but now had recovered). This neuron exhibited the largest extracellular spikes of all those we analyzed (Table 2, “Spike amplitude”) and thus we use it for this initial illustration, before analyzing all the neurons. This neuron exhibited both single, isolated spikes, as well as bursts of 2 or more spikes (Fig. 3A, top half). Later spikes within a burst (e.g., those numbered 4 and 5 in Fig. 3A) often began from a voltage level elevated above baseline, and higher than the voltage preceding earlier spikes in the burst (e.g., those numbered 1 and 2 in Fig. 3A). This bursting pattern, where some burst spikes were initiated at a higher voltage level is similar to bursting of deep cortical neurons observed by other groups (Connors et al., 1982; Chagnac-Amat and Connors, 1989; Helmchen et al., 1999; Contreras, 2004), and was also apparent in other layer 5 neurons in our recordings (e.g. Fig. 4G, top half).

How does the modulation of the intracelluar spike waveform during a burst translate to changes in observed extracellular voltage? To explore this, we first looked at the negative of the derivative of the intracellular voltage (Fig. 3A, second from bottom) and compared its dynamics during bursting, to that observed in the simultaneously obtained extracellular recording. We did this comparison because the derivative of the intracellular potential \dot{V}_i has been experimentally observed to closely match the initial rising phase in the waveform of an extracellular spike (Freygang and Frank, 1959; Henze et al., 2000; Anastasiou et al., 2015). We denote the intracellular potential as V_i and the extracellular potential measured at the “closest electrode” (see above for definition) as V_E. Many spikes in \dot{V}_i (Fig. 3A, second
from bottom) can be seen in V_E (Fig. 3A, bottom), but later events in the burst appear smaller or may be indistinguishable from noise. To characterize this modulation more systematically, we examined both \dot{V}_i and V_E (Fig. 3B, top and bottom, respectively) for each spike, plotting them against the time interval since the previous spike (here denoted as inter-spike interval). Plots for \dot{V}_i and V_E both showed a decrease in magnitude from early to late spikes in a burst, with a shape resembling an "L" with a corner around $x = 20$ ms. We note that this corner was not dependent on our chosen criteria of 20 ms for a spike being within a burst: although the coloring of the plot points depends on this cutoff, the shape of the curve does not.

For the neuron explored in Fig. 3, the first spike in a burst (red, $n=327$) had a mean amplitude of 3.0 mV/s (SD0.5) for \dot{V}_i and -345 μV (SD60) for V_E. Later burst spikes had substantially lower amplitude, e.g. the fourth spike in a burst (yellow, $n=189$) had mean amplitudes of 1 mV/s and -100 μV (SD61) respectively. This decrease in \dot{V}_i and V_E magnitude represents a slowing of the initial rising phase of a spike during the progression of a burst. We can see shape change as a result of this slowing of the initial rising phase for burst spikes in Fig. 3B (inset), where we plot the intracellular and extracellular mean waveforms for burst spikes 1-6. Neuron 1 has the highest value of our measure of spike shape change; its half-width ratio is 1.7 (Table 2, Neuron 1, "half-width ratio"). The decrease in V_E magnitude and spike shape, of course, has the potential to introduce errors: false negatives, or missed spikes, due to the reduction of magnitude, which could confound thresholding methods as well as methods of spike sorting that depend on stereotypy of spike shape over time.

We next sought to quantify how the burst-related changes in spike shape might affect spike detection. In order to get a general picture of the effect of bursting, independent of a given choice of threshold, in a simple and intuitive way, we decided to systematically vary the threshold and perform a receiver-operator characteristic (ROC) analysis, a standard statistical technique that allowed us to summarize the performance of spike detection across a range of thresholds. Instead of picking a single voltage threshold, which may be arbitrary, we systematically varied the threshold applied to the signal of the "closest electrode" and categorized all deflections above that threshold as true positive or false positive spikes, by comparing to the patch ground truth. An example threshold of -150μV is shown as the dotted grey line in Fig. 3A, bottom.

We defined a true positive (TP) as a deflection in the extracellular signal that matched the timing of a patch-reported spike within 1 ms, with the timing of the patch-reported spike being the time of the maximum of the derivative of that spike; a maximum of 1 true positive was assigned per intracellular spike. A false positive (FP) was a deflection in the extracellular signal that did not match the timing of an intracellular spike. This deflection might be noise, or a spike from another neuron. We then created partial ROC (PROC) plots. On the y-axis we plotted true positive rates ($TP / total number of patch spikes$) as thresholds varied. For the x-axis, we limited our analysis to when $FP \leq total number of patch spikes$, in order to increase the dynamic range around the area of interest for a spike sorter. Specifically, it would likely make no difference to an electrophysiologist if FPs
exceeded true spikes by 10 times versus 100 times; in either case the recording may simply
be deemed unworthy of further analysis, whereas knowing whether the false positive rate
was 10 versus 30% may be useful. So that this partial ROC was comparable between
recordings, we plotted FP on the x-axis divided by total number of patch spikes. (See
Methods for further description and rationale.) We plotted the PROC for all the spikes in
Fig. 3C, solid black line, "all spikes"; the grey circle corresponds to the -150μV threshold
level in Fig. 3A, bottom and Fig. 3B, bottom. We then used the same method to create a
second PROC curve, but this time excluded spikes within a burst (as determined on the
patch trace), in our calculation of the true positive rate (Fig. 3C, dotted line; “no burst
spikes”). We note that the TP rate does not reach one in this PROC for all spikes (Fig. 3C,
solid line), indicating that there is not a threshold such that all patch spikes are detected
before FP becomes greater than the total number of patch spikes. When burst spikes are
removed from the PROC (Fig. 3C, dotted line), the TP rate does approach 1. This indicates
that many of the burst spikes are mixed in with other deflections composed of spikes from
other neurons and noise, and a simple threshold is unable to tell them apart. Given that
bursting changes spike shape, spike sorting methods that depend on spike shape might also
struggle; however, an explicit representation of burst spike number and timing might
reveal patterns that could be used to facilitate classification, since clearly there is structure
in how spike shape changes during a burst (e.g., Fig. 3B).

To examine how the activity of the patched neuron compared to the other electrical activity
picked up on the extracellular electrode, for this exemplar neuron, we plotted an amplitude
histogram of extracellularly recorded non-burst and burst spikes that corresponded to the
patch-reported spikes, as well as all other voltage deflections exceeding the 2*MAD noise
floor across the entire recording (Fig. 3D). These latter voltage deflections may originate
from other neurons or noise. While non-burst spikes formed a clear peak, burst spikes
were more mixed in with the other deflections. We note that for this neuron, 1% of the non-
burst spikes (28) and 27% of the burst spikes (269) fall into our thresholding range,
between 2-6 * MAD (Table 2, “Thresholding range”) and thus have a potential to be lost to
spike sorting before the spike classification process.

Characterization of bursting in cortical cell layers 2/3 and 5, using simple thresholding

One opportunity offered by our automated dual recording system is the ability to examine
how a given electrode array functions in different brain regions or cell layers. Our close-
packed electrode arrays spanned multiple cortical cell layers, so we had an opportunity to
assess whether spiking properties differed across cell layers in a way that would
differentially confound attempts at spike detection and classification. Different brain
regions contain different neurons with variable firing rate, spike shapes, and neural
densities. Spike sorting algorithms may perform better or worse based on these variables
but little data exists characterizing these differences. Biases introduced by varying spike
sorting performance may impact downstream analyses of spike trains between different
brain regions or between different neuron types in the same region. Here we use our
technique to explore one example of differences in spike sorting performance between two
brain areas that may bias downstream analyses.
To systematically explore the population of 12 recordings, we used the partial area under the ROC curve (PAUC) as a performance measure (Krzanowski and Hand, 2009). The PAUC ranges from 0 to 1, where a value of 1 indicates that there are no false positive or false negative deflections for any given threshold (see Methods). For each recording we calculated PAUC for all spikes and non-burst spikes (Fig. 4A, left, green lines for layer 2/3 neurons, magenta lines for layer 5 neurons, and group mean represented by a solid black line; neurons are rank ordered within a cell layer, with the darkest shade meaning the patched neuron with a highest mean spike amplitude on the “closest electrode,” with decreasing darkness as indicated for smaller spike amplitudes). Pooling all neurons, the PAUC when considering all spikes was significantly less than the PAUC when considering only non-burst spikes, indicating decreased spike detection performance (Fig. 4A, right inset; mean area of the all spikes group minus the non-burst spikes group is 0.0186, SEM is 0.0065, N = 12 neurons from 7 mice).

While there was a significant effect of bursting on the PAUC when all neurons were pooled, we noted that this effect was more commonly observed in layer 5 neurons than in layer 2/3 neurons (Fig. 4A, magenta and green, respectively). While for some layer 2/3 neurons this can be explained by a low number of burst spikes (e.g. Neuron 9), we also found that layer 2/3 neurons exhibited generally lower spike amplitude modulation with bursting. We can see this difference in the derivative of the amplitude of the intracellular spike (Fig. 4B, left, N = 5 neurons from 4 mice for layer 2/3, and N = 7 neurons from 5 mice for layer 5, neuron numbering as in Fig. 3A). Layer 5 neurons had a significantly greater burst-related decrease in spike slope than layer 2/3 neurons (Fig. 4B, right, inset: derivative of the amplitude of the intracellular spike for the "all spikes" group minus the non-burst spikes group is 0.0193 for layer 2/3 neurons and 0.1515 for layer 5 neurons, with SEMs of 0.0065 and 0.0394, respectively). For the 2 cell-attached recordings, we analyzed the raw spike height rather than its derivative. In Fig. 4C we plot the normalized mean extracellular amplitude vs. burst spike number for each recording, and found a general trend where for many layer 5 neurons the spike amplitude decreases throughout a burst more than for layer 2/3 neurons. Thus, spikes later in bursts have a greater potential to be lost in the spike detection process, which we also see when we look at which burst spike numbers are in the 2-6 * MAD range (Table 2). Finally, the mean half-width ratio is also larger for layer 5 at 1.34 (SD0.16) than layer 2/3 at 1.08 (SD0.12), suggesting that the shape of layer 5 burst spike waveforms changes more than layer 2/3 (half-width ratios for each recording in final column of Table 2). Layer specific spike amplitude and shape modulation may result in more burst spikes lost when spike sorting layer 5 neurons than for spike sorting layer 2/3 neurons. This potential difference in spike accuracy may bias measures in which spike times from layers 2/3 and layer 5 are compared, e.g. spike-spike or spike-field correlation measures.

A large drop in PAUC when including burst spikes was not always observed in the layer 5 neurons that exhibited large spike modulation during bursting; this is particularly evident in the neuron with the lowest PAUC, Neuron 7 (Fig. 4A-B, Fig. 4G-I). This low PAUC is indicative of an extracellular trace in which there were many other deflections in the spike range (Table 2, “Other deflections in spike range” and Fig. 4I) confounding the spike
detection and classification of the trace. The \textit{PAUC} did not change because it was already at a floor.

An algorithm for assessing potential spike sorting performance as a function of electrode density and quantity.

So far we have only analyzed extracellular traces on single electrode pads, to probe the limits of spike sorting. But of course one might take advantage of many pads on an extracellular electrode array in the quest to sort spikes. How might potential spiking sorting performance change with electrode density and number? We devised an automated algorithm (Fig. 5A) based on a simple model in which a neuron's intracellular voltage is transformed by the resistances and capacitances of the membrane, extracellular space, etc. and mixed with noise and spikes from other neurons to create the extracellularly-measured voltage (Fig. 5A, top, "Model"). We then created an estimator of the intracellular spikes from the extracellular voltage, which in outline worked by first deriving a transformation from the extracellular to intracellular voltage (Fig 5A, bottom, "Reversing the model," steps 1 and 2). Then we regressed a specified set of transformed extracellular traces on the actual intracellular trace to create an intracellular voltage estimator (Fig 5A, bottom, "Reversing the model," step 3). In detail, the algorithm involved the following steps. In step 1 (Fig. 5B), we calculated a convolution filter kernel that would minimize the mean-squared error between the extracellular and intracellular signal (see Methods for details of step 1 and Appendix for equations and derivation thereof). In step 2, the extracellular voltage from a single electrode was convolved with the convolution filter kernel, to create the "convolved extracellular voltage." In step 3, multiple linear regression was performed between a specified set of convolved extracellular voltage traces, corresponding to a set of electrode pads of interest, and the actual patch clamp voltage trace. The resulting regression coefficients were multiplied with their respective convolved extracellular voltages and summed, yielding a single estimator of patch voltage from extracellular voltages, from a given set of electrodes. The estimators by design resembled the shape of the patch voltage traces, so for the 10 whole cell recordings we analyzed, we took the derivative of the estimator to make it resemble the shape of an extracellular recording for the following spike sorting analyses (we did not use the derivative for cell-attached recordings). In this way, we aimed to make a simple estimator of the power of a given set of electrodes to support spike sorting, by seeing how accurately they could recapitulate the information contained in the patch trace.

We calculated the \textit{PAUC} as before, with a sliding threshold, for these thus-processed intracellular voltage estimators. The \textit{PAUC} in this case represents potential spike sorting performance using the specified set of electrodes. Calculating the \textit{PAUC} for different subsets of the electrode array allows us to compare the potential spike sorting performance for different possible electrode array layouts.

We chose the set of extracellular voltage traces to be convolved as follows: working electrodes were ranked by their mean extracellular spike amplitude, from largest to smallest, as in figure 2C. With this ordering in place, groups of electrodes were then chosen, depending on the analysis. The top 64 amplitude-ordered electrodes ("full density"), or
skipping every 2nd electrode (i.e. the 1st, 3rd, 5th, etc. electrode were included for a total of 32 electrodes; "half density"), or skipping 4 electrodes at a time (i.e. the 1st, 5th, 9th, etc. electrodes were included for a total of 16 electrodes; "quarter density,") were used for Fig. 5C. The top N amplitude-ordered electrodes were used for Fig. 5D, where N ranged from 1 to 64. We chose this ordering scheme for the purposes of the current study, rather than ordering by actual spatial location, because we wanted to compare between recordings taken with different electrode arrays, with electrode count varying from 64 to 256 electrodes, spaced in a 2 or 4 column array, in each case focusing on the 64 electrodes that sensed the patched neuron most strongly. (An end user focused on a specific array may well want to use actual spatial distance as the sorting parameter.)

Increased electrode density improved potential spike sorting performance

We explored whether there was a spike sorting benefit to having electrodes packed at the high density of the electrode arrays used in this study. This has practical implications, because given a fixed number of electrodes in a planar array, there is a necessary tradeoff between recording more densely and recording from a greater amount of tissue. We created an estimator of the patched neuron’s voltage generated from the full, half, or quarter density of the ordered electrodes (Fig. 5C). We observed a significant effect of electrode density (repeated-measures one-way ANOVA, $F = 5.656, p = 0.0104, N = 12$ neurons from 7 mice). The mean $PAUC$ of the "full density" group was significantly greater than the "quarter density" group (Fig. 5C, inset; mean of full density area minus mean of quarter density area, or "mean difference" was 0.03148), but not the "half density" group (mean difference = 0.01722). With the caveat that our electrode ordering was not based on raw spatial ordering, as described above, practically speaking, this suggests that an array with 2 or more columns with electrodes spaced 11μm apart (center-to-center, or "pitch") may be more amenable to spike sorting than a similar array with 22μm spacing.

Increased electrode number, at fixed electrode density, improved spike discriminability

Finally, we analyzed our data at full electrode density while varying the number of electrodes included in the analysis, using the amplitude ranking as described above so that we could compare across multiple kinds of electrode array. We included the top $\{1, 2, 4, 8, 16, 32, 64\}$ amplitude-ordered electrodes in the construction of the estimator of patch voltage from extracellular voltages (Fig. 5D). We observed a significant effect of number of electrodes (repeated-measures one-way ANOVA, $F = 7.003, p < 0.0001, N = 12$ neurons from 7 mice). The mean $PAUC$ for 64 electrodes was significantly greater than that of 8, 4, 2, and 1 electrodes, but not 32 or 16 electrodes. The mean of the 64 electrodes group minus mean of the n electrode group ("mean difference"), where $n = 1, 2, 4, 8, 16, or 32$ was as follows: 0.1153, 0.1187, 0.1095, 0.07483, 0.04402, 0.01407. With the caveat that our electrode ordering was not based on raw spatial ordering, as described above, practically speaking, these data suggest that increasing the number of close-packed electrodes may improve spike sorting. To ground these results in different terms, if a spike sorter were willing to accept 2 false positives for every 100 patch spikes, she would collect 100 true positives for neuron 8, regardless of electrode configuration. However, for neuron 4, she would collect 46 true positives with an estimator based off of 1 electrode, versus 74 true positives for neuron 8, regardless of electrode configuration.
positives with an estimator based off of all 64 electrodes, while accepting 2 false positives for every 100 patch spikes. There was no obvious trend between extracellular amplitude of the patched neuron's spike and \(PAUC \), or between amplitude and increase in \(PAUC \) with more electrodes (neurons are rank ordered within a cell layer, and the darkest shade means the patched neuron with a highest mean spike amplitude on the "closest electrode," with decreasing darkness as indicated for smaller spike amplitudes). This is likely due to spike sortability depending on an interaction between many factors, including spike amplitude on the electrode(s), co-occurring activity of other surrounding neurons, bursting and how bursting manifests itself in different cell layers.

DISCUSSION

Our paper describes new automated techniques as well as demonstrations of the utility of these techniques. On the technique side, we have developed a novel approach to validating the performance of a given electrode architecture, in a given brain region. By combining automatic patch clamping (Kodandaramaiah et al., 2012) with extracellular recording with arrays of electrodes, in our case close-packed electrodes capable of spatially oversampling neural activity (Scholvin et al., 2016), in a fashion that allows these two kinds of electrodes to be brought into extremely close proximity (i.e., enough to enable dual recording) with minimal damage, we were able to obtain dual recordings with a minimum of human intervention. This technique may enable others to assess the potential spike sorting performance of electrode designs in a diversity of brain regions and species.

We also pursued computational technique development, including a method for reconstructing intracellular voltage from extracellular voltages, using a minimal mean-squared error strategy, and used it to evaluate potential spike sorting performance when electrodes are systematically added or removed post hoc from a densely recorded dataset. In this way we were able to examine the extent to which arrays of close-packed electrodes exhibiting spatial oversampling help with data analysis of spike data recorded from the mouse cortex. Our results suggest that further increasing the density and number of electrodes beyond the current state of the art might provide additional benefits for spike sorting. Electrodes positioned in 3D configurations rather than 2D configurations may help too, but that was not explored here. These results, and the computational framework we developed, should also be applicable to the field of in vitro recording with high density arrays, where arrays of tens of thousands of sensors have been put to scientific use, with electrode density that approaches that of the close-packed electrodes in this study (Ballini et al., 2014; Jäckel et al., 2017; Tsai et al., 2015, 2017).

Bursting, however, remains a challenge for spike sorting, regardless of electrode count, since spike shapes change in sometimes complicated ways during bursting, in ways that may not be fully understood because the changes are cell type-specific.

Bursting as a confound to spike sorting

It is well known that bursting may pose a problem for spike sorting (Harris et al., 2000; Lewicki, 1998). Using our technologies, we demonstrate a series of analyses of the impact...
of bursting on spike detection and classification made possible by our colocalized recordings. In almost all of our layer 5 recordings (e.g. Fig. 3B) we observed a pattern in which extracellular spike voltage declined, sometimes to below commonly used thresholds, during a burst of spiking. This decline was visible both in the extracellular recordings and the time derivative of the intracellular voltage. Whether some or all of these low amplitude burst spikes, often with spike shapes different than non-burst spikes, can be detected and correctly categorized is an important question for spike sorting. One possibility is that the dynamics of bursting could be computationally modeled, perhaps biophysically, and incorporated into spike sorting algorithms to detect and categorize spikes likely to belong to a burst. Colocalized recording technologies will provide the datasets necessary to test such spike sorting algorithms, enabling evaluation of their performance on extracellular data from a variety of cell types and brain regions, and under different stimulus conditions.

The relatively higher waveform modulation in layer 5 versus layer 2/3 neurons during bursting may be accounted for by the elevated, subthreshold depolarization envelope observed in intracellular recordings of bursts. The latter has been associated with sensory-evoked dendritic calcium transients observed in intrinsically-bursting neurons in layer 5, but not in layer 2/3 neurons (Helmchen et al., 1999). Further studies could examine whether such processes play a role here; in the current study we treated this phenomenologically, as an observation that could be detected with our automated system.

Close-packed electrode arrays for improved spike sorting

We found that close-packed electrodes which spatially oversample a given neuron from many sites in space improved potential spike sorting performance. There is precedent for spike sorting performance improving with increased number of electrodes — e.g. when spike sorting is done on four electrodes rather than one, using an estimator of optimal spike sorting performance based on clustering (Harris et al., 2000). Our approach — combined autopatching and dense electrode recording — extends these results to high channel counts, and could help with systematic assessment of different electrode types in the future.

In sum, our hope is to offer a strategy that is automated and simply deployed for understanding the meaning of a given extracellular recording in the brain. We here show several examples of how it can help clarify the interpretation of electrical signals recorded on a given electrode, but such a technique may be generally of importance for analyzing a diversity of electrode types.

AUTHOR CONTRIBUTIONS

BDA designed experiments, developed experimental methods and technology, collected data, analyzed data, interpreted results, and wrote manuscript. CMK analyzed data, interpreted results, and wrote manuscript. JGB developed experimental methods and technology, analyzed data, and interpreted results. JS developed experimental technology and interpreted results. JPK developed experimental technology and interpreted results. CC, and CL developed experimental technology. LFS analyzed data, interpreted results, and
wrote manuscript. SBK developed experimental methods and advised on experimental
methods. MT developed data analysis methods, interpreted results, advised on data
analysis, and wrote manuscript. ESB designed experiments, advised on data analysis,
interpreted results, and wrote manuscript.

ACKNOWLEDGMENTS

We wish to thank Emily Mu, David Theurel, Leon Shen, and Christina Yang for helpful
exploratory work during early stages of this project, as well as Ho-Jun Suk for experimental
help. We would also like to thank Annabelle Singer, Giovanni Talei Franzesi, Ingrid van
Welie, Francisco Flores, Mike Love, Nancy Kopell, and the Boyden lab for experimental or
computational advice. For funding, SBK acknowledges the McGovern Institute
Neurotechnology (MINT) grant, MnDRIVE fund and NIH R21 NS103098-01 grant. CC, CL,
and JPK acknowledge NIH 1R43MH101943. ESB acknowledges NIH 1R01EY023173, the
MIT Media Lab, the Synthetic Intelligence Project, NIH Director’s Pioneer Award
Neurotechnology (MINT) grant, MnDRIVE fund and NIH R21 NS103098-01 grant. CC, CL,
and JPK acknowledge NIH 1R43MH101943. ESB acknowledges NIH 1R01EY023173, the
MIT Media Lab, the Synthetic Intelligence Project, NIH Director’s Pioneer Award
1DP1NS087724, IET Harvey Prize, NIH 1R24MH106075, NIH 1R43MH101943, NIH
1R01NS102727, NIH 2R01DA029639, the HHMI-Simons Faculty Scholars Program,
Charles Hieken, John Doerr, and the New York Stem Cell Foundation-Robertson Award.

DISCLOSURES

CC, CL, and JPK work for LeafLabs, LLC, which manufactures the Willow data acquisition
system used in the experiments detailed in this paper.
<table>
<thead>
<tr>
<th>#</th>
<th>Mouse</th>
<th>Layer</th>
<th>Type</th>
<th>Awake</th>
<th>Working electrodes</th>
<th>Spike count</th>
<th>Firing rate, Hz</th>
<th>Burst count</th>
<th>Burst rate, Hz</th>
<th>Spikes per burst</th>
<th>Burst duration, ms</th>
<th>Burst ISI, ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>5</td>
<td>Whole</td>
<td>Yes</td>
<td></td>
<td>236</td>
<td>3877</td>
<td>989</td>
<td>8.50</td>
<td>327</td>
<td>0.72</td>
<td>4.0 (SD1.7)</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>5</td>
<td>Cell Attached</td>
<td>No</td>
<td></td>
<td>122</td>
<td>2372</td>
<td>969</td>
<td>5.20</td>
<td>489</td>
<td>1.07</td>
<td>3.0 (SD1.0)</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>5</td>
<td>Whole</td>
<td>No</td>
<td></td>
<td>236</td>
<td>323</td>
<td>15</td>
<td>0.71</td>
<td>15</td>
<td>0.03</td>
<td>2.0 (SD0.0)</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>5</td>
<td>Whole</td>
<td>Yes</td>
<td></td>
<td>214</td>
<td>2926</td>
<td>1328</td>
<td>6.42</td>
<td>566</td>
<td>1.24</td>
<td>3.3 (SD1.6)</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>5</td>
<td>Whole</td>
<td>No</td>
<td></td>
<td>122</td>
<td>8748</td>
<td>4004</td>
<td>19.18</td>
<td>2296</td>
<td>5.04</td>
<td>2.7 (SD1.0)</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>2/3</td>
<td>Whole</td>
<td>No</td>
<td></td>
<td>58</td>
<td>1136</td>
<td>291</td>
<td>2.49</td>
<td>168</td>
<td>0.37</td>
<td>2.7 (SD1.4)</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>5</td>
<td>Whole</td>
<td>No</td>
<td></td>
<td>225</td>
<td>4640</td>
<td>1625</td>
<td>10.18</td>
<td>693</td>
<td>1.52</td>
<td>3.3 (SD1.5)</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>2/3</td>
<td>Whole</td>
<td>No</td>
<td></td>
<td>122</td>
<td>823</td>
<td>93</td>
<td>1.80</td>
<td>65</td>
<td>0.14</td>
<td>2.4 (SD0.8)</td>
</tr>
<tr>
<td>9</td>
<td>G</td>
<td>2/3</td>
<td>Cell Attached</td>
<td>No</td>
<td></td>
<td>238</td>
<td>205</td>
<td>6</td>
<td>0.45</td>
<td>6</td>
<td>0.01</td>
<td>2.0 (SD0.0)</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>2/3</td>
<td>Whole</td>
<td>No</td>
<td></td>
<td>122</td>
<td>78</td>
<td>16</td>
<td>0.17</td>
<td>15</td>
<td>0.03</td>
<td>2.1 (SD0.3)</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>5</td>
<td>Whole</td>
<td>No</td>
<td></td>
<td>225</td>
<td>2976</td>
<td>1199</td>
<td>6.53</td>
<td>522</td>
<td>1.14</td>
<td>3.3 (SD0.3)</td>
</tr>
<tr>
<td>12</td>
<td>D</td>
<td>2/3</td>
<td>Whole</td>
<td>No</td>
<td></td>
<td>214</td>
<td>1592</td>
<td>216</td>
<td>3.49</td>
<td>187</td>
<td>0.41</td>
<td>2.2 (SD0.4)</td>
</tr>
</tbody>
</table>

Table 1
Table 2

<table>
<thead>
<tr>
<th>#</th>
<th>MAD, μV</th>
<th>Spike amplitude, μV</th>
<th>SNR</th>
<th>Other deflections in spike range</th>
<th>Intra-extra peak offset, ms</th>
<th>Spikes</th>
<th>Spikes</th>
<th>Portion of spikes</th>
<th>Mean burst spike number</th>
<th>Mean burst spike number</th>
<th>half-width ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>non-burst</td>
<td>burst</td>
<td></td>
<td></td>
<td>non-burst</td>
<td>burst</td>
<td>non-burst</td>
<td>burst</td>
<td>non-burst</td>
<td>burst</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>-267 (SD124)</td>
<td>-135 (SD124)</td>
<td>19.24</td>
<td>36</td>
<td>0.30</td>
<td>37</td>
<td>28</td>
<td>269</td>
<td>0.01</td>
<td>0.27</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>-100 (SD24)</td>
<td>-79 (SD32)</td>
<td>13.85</td>
<td>2720</td>
<td>0.16</td>
<td>1</td>
<td>15</td>
<td>56</td>
<td>0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>-91 (SD18)</td>
<td>-63 (SD16)</td>
<td>11.71</td>
<td>766</td>
<td>0.07</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>-77 (SD12)</td>
<td>-54 (SD18)</td>
<td>5.61</td>
<td>370</td>
<td>0.00</td>
<td>6</td>
<td>38</td>
<td>605</td>
<td>0.02</td>
<td>0.46</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>-82 (SD20)</td>
<td>-62 (SD27)</td>
<td>9.09</td>
<td>8441</td>
<td>0.04</td>
<td>58</td>
<td>110</td>
<td>926</td>
<td>0.02</td>
<td>0.23</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>-69 (SD15)</td>
<td>-65 (SD19)</td>
<td>7.64</td>
<td>262</td>
<td>0.00</td>
<td>3</td>
<td>100</td>
<td>51</td>
<td>0.12</td>
<td>0.18</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>-68 (SD32)</td>
<td>-47 (SD37)</td>
<td>5.23</td>
<td>37073</td>
<td>0.03</td>
<td>141</td>
<td>1928</td>
<td>1141</td>
<td>0.64</td>
<td>0.70</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>-64 (SD10)</td>
<td>-56 (SD9)</td>
<td>11.05</td>
<td>11</td>
<td>0.12</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>-60 (SD17)</td>
<td>-63 (SD9)</td>
<td>9.80</td>
<td>1725</td>
<td>0.03</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>0.05</td>
<td>0.17</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>-57 (SD8)</td>
<td>-41 (SD8)</td>
<td>9.66</td>
<td>4</td>
<td>0.16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.00</td>
<td>0.06</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>-53 (SD26)</td>
<td>-38 (SD31)</td>
<td>6.26</td>
<td>20807</td>
<td>0.03</td>
<td>86</td>
<td>682</td>
<td>657</td>
<td>0.38</td>
<td>0.55</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>-52 (SD17)</td>
<td>-52 (SD17)</td>
<td>6.55</td>
<td>3928</td>
<td>0.10</td>
<td>2</td>
<td>443</td>
<td>65</td>
<td>0.32</td>
<td>0.30</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY

APPENDIX

We are interested in estimating the patch clamp voltage time series \(y(t) \) from a series of extracellular voltage recordings \(x_i(t) \) from different electrodes \(i = 1, 2, ... \). We assume that the relation between the functions \(x_i(t) \), \(y(t) \), and noise is time-independent and linear, which implies that

\[
y(t) = (w_i \ast x_i)(t) + n_i(t)
\]

where \(\ast \) denotes convolution, for some convolution kernel \(w_i(\tau) \) that we wish to estimate and some random noise term \(n_i(t) \) that includes both voltage contributions from other neurons and any noise from the detector system electrical properties. Fourier transforming this equation and using the convolution theorem simplifies it to

\[
\hat{y}(\omega) = \hat{w}_i(\omega)^\ast \hat{x}_i(\omega) + \hat{n}_i(\omega)
\]

where \(\omega \equiv 2\pi f \) denotes angular frequency, hats denote Fourier transforms, and \(\ast \hat{x}_i(\omega) \) is the complex conjugate of \(\hat{x}_i(\omega) \). We use the normalization convention where the Fourier transform is unitary, i.e., where \(\hat{x}(\omega) \equiv (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} e^{-i\omega t} x(t) dt \). This formulation allows us to estimate our kernel \(w \) for each frequency separately. In practice, we split our time series into chunks of 512 samples each, overlapping twofold (i.e. the first chunk contains samples 1-512, the next chunk is 257-768, the next is 513-1024, and so on), and evaluate \(\ast \hat{x}_i(\omega) \) and \(\hat{y}(\omega) \) separately for each chunk. If we focus on a particular frequency and plot all the points \(\{ \ast \hat{x}_i(\omega), \hat{y}(\omega) \} \) in a two-dimensional scatter plot, the desired coefficient \(\hat{w}_i(\omega) \) is simply the slope of the relation, with the residual scatter around the best-fit line corresponding to the noise contribution \(\hat{n}_i(\omega) \). We estimate this slope \(\hat{w}_i(\omega) \) using simple linear regression, which provides the optimal estimator in the sense of minimizing the mean-squared error. Via Parseval’s Theorem, the optimal (mean-squared-error-minimizing) estimator of our desired real-space convolution kernel \(w_i(\tau) \) is simply the inverse Fourier transform of these regression coefficients \(\hat{w}_i(\omega) \).

In summary, each electrode time series \(x_i(t) \) gives us a prediction \((w_i \ast x_i)(t) \) of the patch-clamp time series. We linearly combine them into a single estimate \(y_{est}(t) \) of the patch-clamp time series \(y(t) \):

\[
y_{est}(t) = \sum_i \alpha_i (w_i \ast x_i)(t)
\]

where \(\alpha_i \) are determined via simple linear regression to minimize the mean squared prediction error.
FIGURE LEGENDS

Figure 1. A strategy for dual automated patch clamp and extracellular electrode array recordings in vivo.

A: Schematic of mouse cortical layers (grey dotted lines), with an electrode array inserted perpendicularly to the brain surface (from upper right). A patch pipette targets a neuron (from upper left) in either layer 2/3 or layer 5, with the goal of having the electrode array and patch pipette colocalized (i.e., recording the activity of the same neuron). Curves emanating from pipette represent current emitted from the pipette for sensing on the electrode array. B: Pipette tip to electrode array distance prediction, from computational model. As the pipette is lowered towards the array (gold squares) in discrete, 2um steps, distance is estimated (red dots, with a green, best-fit line across data points), shown for an exemplar recording (data in panels C, D, E, and F also correspond to this recording). C: 20Hz amplitude of a voltage pulse from the pipette as sensed across the electrode array (blue dots represent electrodes), and 1/r curve fit (surface plot). Electrode spacing on the array was 11 microns between adjacent electrode centers. D: Amplitude (in circles) and curve fit (solid lines), illustrated for a single column of the electrode array, as the pipette approaches the array in discrete 2 μm steps. E: Goodness of fit for our 1/r model during each step, as the pipette approaches the electrode array. F: At each step, a distance between the pipette tip and the electrode with the largest 20Hz amplitude signal is approximated. Residual error to a best fit line that estimates the 3-D trajectory of the pipette tip in space is calculated post hoc (blue dots). G: Position estimates, as in panel B, for 4 of the 16 recordings in which the model was used, illustrating varying "confidence" in the model. Number labels ("#") correspond to recording number in panel H. Histology for the 2 recordings in which both the patched neuron was recovered and the track from the electrode array was apparent are shown (left and second from left, with biocytin-filled neuron in yellow and Dil from the array in cyan for the left experiment). Distances indicated between the neuron and the electrode array are 40um and 75um, respectively. H: Mean, over all pipette steps, of residuals (top) and mean of R² fits (bottom) for each of the 16 recordings in which the model was used.

Figure 2. Colocalized recordings: basic properties.

A: Voltage trace from a representative patched neuron recorded in the whole cell configuration (left), with a schematic of the patched neuron (blue) and other neurons (magenta, green, yellow) being sensed by an array of close-packed electrodes (gold; in our case, ~9x9 μm electrodes spaced ~2 μm apart; lines emanating from neurons representing signal propagation). Right, for each electrode in a 2-column, 64-electrode array, snapshots of bandpass-filtered (2nd-order IIR Butterworth, 100-6000Hz) voltage are triggered off the timing of the peak of the derivative of the spikes of the patched neuron, and averaged. Shown are these patch-triggered mean extracellular spikes, displayed in the spatial configuration corresponding to the location of the electrodes in the array. In this analysis, a spike that occurs within 20ms of another spike is considered to be within a burst (Staba et al., 2002), and later spikes in a burst (from the 2nd onwards) are...
not included in this average, since their waveforms may differ significantly from non-burst or 1st-spike-in-a-burst spikes (Henze et al., 2000). Electrodes that are shorted (i.e., impedance <300kΩ) or open (i.e., impedance >2MΩ) are in red. B: A representative trace from a patched neuron recorded in the cell-attached configuration (left), and patch-triggered mean extracellular spikes on 128 electrodes of a 4-column, 256-electrode array (right). Shorts and opens are colored in red. C: Patch-triggered mean extracellular spikes from the [2]th electrode amongst the list of amplitude-ordered electrodes (n-0-6), from each of the 12 neurons, color-coded as indicated. Amplitude ordering means ranking good (i.e., non-shorted/open) electrodes by their patch-triggered mean extracellular spike heights, from largest to smallest. Neurons are ordered by these aforementioned mean spike heights, so that "Neuron 1" has the greatest amplitude, and "Neuron 12" has the smallest.

Figure 3. Evaluation of detection and classification of burst spikes via simple thresholding.

A: Voltage traces from a cortical neuron in layer 5 of the primary visual cortex of an awake, headfixed mouse ("Neuron 1" from Fig. 2C). This exemplar neuron had the largest mean extracellular spikes amongst all our recordings (n = 12 recordings from 7 mice). **Top**, 5 s of whole cell patch recording (current clamp) of spikes recorded during delivery of visual stimuli (see Methods). **Second from top**, zoom-in to 500ms of the recording (top) containing a burst, with spike number within a burst labeled with numbers and colors as shown (for use in later figure panels). A non-burst spike is labeled with a grey 0. The set of all spikes, for a given neuron, with a specific label (e.g., green 2) is here referred to as a "burst spike group." **Second from bottom**, the negative of the derivative of the trace immediately above. **Bottom**, the extracellular voltage trace (bandpass filtered, 2nd-order IIR Butterworth, 100-6000Hz) from one electrode of a co-localized, 256-electrode recording. This electrode was the one that exhibited the greatest mean extracellular spike amplitude, and was here referred to informally as the "closest electrode." For use in computing partial receiver operating characteristic (PROC) curves later, we plot an example threshold in a gray dotted line (at -150μV). **B**: Spike amplitude vs. bursting state, for the neuron of panel A. **Bottom**, spike amplitudes measured on the "closest electrode" (as in the lowest trace of panel A) at the times of patch clamp-measured spikes, labeled with colors/numbers as in panel A, plotted vs. time since the previous spike (on a log scale, with spikes of later burst spike groups plotted on top of those of earlier ones). Grey dotted line corresponds to the threshold plotted in panel A, bottom, and is used to define a particular point on the PROC curve in panel C. Each black arrow points from the mean (voltage, time) coordinate of a particular burst spike group, to the mean of the next burst spike group. Inset, mean extracellular spikes for each burst spike group, color-coded as before, and overlaid (with later burst spike groups on top of earlier ones). **Top**, as in the bottom panel, but for peaks of the negative of the derivative of the intracellularly measured spikes (as shown in panel A, second from bottom). **C**: Partial receiver operating characteristic (PROC) curve (e.g., true positive rate vs. false positives divided by patch spikes, plotted as a threshold, such as indicated by the gray lines in panels A and B, is systematically varied), for the "closest electrode" recording of the neuron of A. True positives (TPs) correspond to extracellular spikes with amplitude above the threshold and
that occur within 1 ms of the times of patch-reported spike times, expressed as a fraction of
the total number of patch spikes; false positives (FPs) correspond to the number of
detected extracellular spikes that do not occur within 1 ms of a patch spike time, expressed
as a ratio to the total number of patch spike times. The grey circle corresponds to the TP
and FP values associated with the -150μV threshold shown in panels A and B. We
generated such curves when all spikes were considered (black line) as well as when
bursting spikes (e.g., spikes that were preceded by another spike within 20 ms, in the patch
clamp recording) were eliminated (black dotted line). D: Histogram of extracellular voltage
deflections greater than the chosen noise floor of 2 * MAD across the entire recording, with
non-burst (grey) and burst spikes (green) of the patched neuron, as well as other
deflections (yellow).

Figure 4. Characterization of bursting in cortical cell layers 2/3 and 5.

A: Partial areas under the PROC curves (PAUC) for each of the twelve neurons, in the no-
burst spikes vs. all spikes condition, in green for layer 2/3 neurons and magenta for layer 5
neurons (black, the mean across all 12 neurons from 7 mice). Neuron number, as in Fig. 1D,
is in grey, and line darkness is determined by the amplitude ranking introduced in Fig. 1D
(neurons are rank ordered within a cell layer, and the darkest shade means the patched
neuron with a highest mean spike amplitude on the closest electrode, with decreasing
darkness as indicated for smaller spike amplitudes). Inset, PAUC difference between the
all-spikes vs. non-burst conditions (mean across neurons; error bar, standard error). *, P =
0.0432, paired t-test (N = 12 neurons from 7 mice). P-values are indicated in graphs in this
paper with * meaning a p-value of 0.01-0.05, ** for 0.001 to 0.01, *** for 0.0001 to 0.001,
**** for < 0.0001, and ns (“not significant”) for p > 0.05. B: Mean amplitude of the
intracellular spike derivative, normalized to mean non-burst amplitude for each neuron, in
the no-burst spikes vs. all spikes conditions, in green for layer 2/3 neurons and magenta
for layer 5 neurons, with neuron numbers as in panel A. Inset, normalized intracellular
derivative of spike amplitude difference between the all-spikes vs. non-burst conditions,
for layer 2/3 vs. layer 5 neurons (mean across neurons in each cell layer; error bars,
standard error). *, P = 0.0195, two-sample t-test between layer 2/3 neurons (N = 5 neurons
from 4 mice) and layer 5 neurons (N = 7 neurons from 5 mice). C: Change in extracellular
spike amplitude by spike number in burst. For each recording, mean extracellular
amplitude is normalized to the mean amplitude of the first spike in the burst for each
recording and plotted for burst spike numbers 1-6. Values are only plotted if there were at
least 5 spikes at that burst number. Errors bars at 1 standard deviation, shifted slightly
along the x-axis for better visibility. As in B, layer 2/3 neurons are labeled in green and
layer 5 neurons are labeled in magenta. D-F: As in Fig. 3A-B and D, but for a representative
(in terms of extracellular spike amplitude) neuron in cortical layer 2/3 of an anesthetized
(0.5-1.2% isoflurane) mouse (“Neuron 6” from Fig. 2C). G-I: As in panels C-E, but for a
representative cortical layer 5 neuron (“Neuron 7”).

**Figure 5. An algorithm for assessing potential spike sorting performance as a
function of electrode density and quantity.**
A, top: A model in which the intracellular voltage is transformed by membrane capacitance and resistance, conductance delays, etc. and mixed with noise and spikes from other neurons to produce an extracellular voltage as sensed on an electrode. A, bottom: Reversal of the model in panel A, in which the extracellular voltage is transformed to better resemble the intracellular voltage, and is unmixed from noise and spikes of other neurons to better approximate the intracellular voltage. Unmixing is performed by linearly regressing the transformed extracellular voltage against the intracellular voltage. B: Details of the inverted model, zoomed on individual spike waveforms. Top, "step 1", a transformation that minimizes the mean-squared error between the extracellular voltage from a single electrode (we will consider each individual electrode in turn) and intracellular voltage is calculated, yielding a filter kernel. (Shown are 6 spikes from an actual recording, for ease of visualization.) Middle, "step 2", the extracellular voltage from the same electrode used in step 1 is convolved with its corresponding convolution filter kernel, to create the "convolved extracellular voltage." Bottom, "step 3", electrodes are ordered by amplitude, as described for figure 1, panel H, and the electrodes to be included in the analysis (i.e. 64, 32, or 16 electrodes (full, half, and quarter density, respectively) for panel C, or the first n electrodes for panel D) are chosen. Steps 1 (Top) and 2 (Middle) are applied to the voltage of each of these chosen electrodes, and a multiple linear regression is performed between these convolved extracellular voltages and the bandpass filtered patch voltage. The resulting regression coefficients are multiplied by their respective convolved extracellular voltages and summed, yielding a single estimator of patch voltage from extracellular voltages (Step 3, bottom). C: Partial areas under the curve (PAUC) for ROCs from each neuron, as in Fig. 4A, but thresholding on the derivative of the estimator of patch voltage, comparing scenarios when the estimator of patch voltage was generated from the top 64 amplitude-ordered electrodes in a recording as a full set ("full density"), skipping every 2nd electrode (i.e. the 1st, 3rd, 5th, etc. electrodes were included for a total of 32 electrodes; "half density"), or skipping 4 electrodes at a time (i.e. the 1st, 5th, 9th, etc. electrodes were included for a total of 16 electrodes; "quarter density"). These results and the results in panel D were generated when including all spikes of the patched neuron (i.e. not excluding burst spikes). A significant effect of electrode density was observed (repeated-measures one-way ANOVA, F = 5.656, p = 0.0104, N = 12 neurons from 7 mice). The mean PAUC of the "full density" group was significantly greater than the "quarter density" group (mean of full density area minus mean of quarter density area, or "mean difference" was 0.03148; Dunnett’s multiple comparisons test, with corrected p = 0.0054, **), but not than the "half density" group (mean difference = 0.01722, p = 0.1401, "ns" means "not significant"). D: Left, PAUCs derived from the derivative of the estimator of patch voltage generated from the top N amplitude-ordered electrodes in a recording (individual neurons colored as in panel C, mean in black). Right, PAUC differences from the 64 electrode group (light grey, with error bars representing standard error of the difference). A significant effect of number of electrodes was observed (repeated-measures one-way ANOVA, F = 8.364, p < 0.0001, N = 12 neurons from 7 mice). The mean PAUC for 64 electrodes was compared to that of 32, 16, 8, 4, 2, and 1 electrode(s). The "mean difference" from subtracting the 2 values, and the p value, were as follows: 0.01407 and p=.01407 (32 electrodes), 0.04402 and p=0.28332 (16), 0.07483 and p=0.0149 (8,*), 0.1095 and 0.0002 (4,**), 0.1187 and 0.0001 (2,***), and 0.1153 and 0.0001 (1,****; Dunnett's multiple comparisons test).
Table 1 – Properties of 12 recordings with >50μV magnitude extracellular spikes. Some recordings came from the same mouse, as denoted. Layer is inferred from stereotaxic coordinates. Working electrodes refers to the number of electrodes on the multi-electrode array that were not open or shorted. Spike count is based on the patch recording and is reported for both burst and non-burst spikes. Firing rates varied from 0.2-19.2 Hz. The number of bursts is listed as well as the burst rate (# bursts per unit time) for the recording. Mean burst duration is reported in ms. Mean burst interspike interval (ISI) is reported in ms. SD abbreviates standard deviation.

Table 2 – Properties of the 12 neurons of Table 1, as recorded on the “closest” extracellular electrode. SD, standard deviation. MAD, median absolute deviation (equation can be found in the methods). Spike amplitude is denoted for both burst and non-burst spikes. SNR, signal-to-noise ratio, is defined as the mean non-burst spike amplitude (column 3) divided by MAD (column 2). Other deflections in spike range, a measurement of the noise and activity recorded from other neurons on the electrode which may confound spike detection and classification; the details of the calculation can be found in the Results. Intra-to-extra peak offset, the difference between the timing of the neuron’s spike as recorded by the extracellular electrode minus the timing of the same as recorded by the patch pipette, with details as follows. The timing of the maximum of the derivative of the mean patch-recorded spike waveform is defined as 0, and the reported offset is the time elapsed after 0 representing the maximum deflection of the mean extracellular spike waveform. We use a minimum spike detection threshold of 2 * MAD and so report the number of spikes (as detected on the extracellular trace) below it. To look at the number of spikes with amplitudes near or in the noise, we defined a noise range of between 2-6 * MAD, based on spike detection thresholds found in the spike sorting literature. (For most neurons, most extracellular spikes were greater in amplitude than 6 * MAD.) Spikes in this range may be lost in the spike detection step of spike sorting. We report the number and portion of spikes, non-burst and burst, in this range, relative to the total number of non-burst and burst spikes respectively. For some recordings burst spikes in particular are found in this range. Mean burst spike number reports the mean burst spike number (e.g. 2, 3, 4,...) for the burst spikes in the 2-6*MAD range for each recording. Half-width ratio is the half-width of the mean burst spike divided by the half width of the mean non-burst spike. When half-width ratio is one, the mean burst and non-burst spikes have the same width. When half-width ratio is greater than one, the burst spike is longer than the non-burst spike.
Figure 1. A strategy for dual automated patch clamp and extracellular electrode array recordings in vivo.
Figure 2. Colocalized recordings: basic properties.
Figure 3. Evaluation of detection and classification of burst spikes via simple thresholding.
Figure 4. Characterization of bursting in cortical cell layers 2/3 and 5.
Figure 5. An algorithm for assessing potential spike sorting performance as a function of electrode density and quantity.

Model

Intracellular, V_i
Transformed by membrane, extracellular space, etc.

Extracellular, V_e
Mixed with noise and spikes from other neurons

Note: V_e and V_i were first bandpass filtered, 100-6000Hz, 2nd order IIR Butterworth, for calculations relating to this figure

Reversing the model

Derive a filter kernel to minimize mean squared error between V_e and V_i (step 1) and convolve with V_e (step 2)

V_i estimate from V_e
Run a linear regression between V_i and the estimate of V_i from V_e for each of 64 electrodes (step 3)

V_i estimate from V_e
using all 64 electrodes

Compare result (for cell-attached recording) or derivative of result (for whole cell recording) to V_i

Intracellular, V_j

Reversing the model, zoomed on spike waveforms

step 1

V_e
minimize mean squared error between V_e and V_i

filter kernel

step 2

V_e
convolve

convolved V_e

step 3

convolved V_e from n electrodes

linear regression

estimator of V_i from n convolved V_e's

Partial area under ROC curves

Comparison of V_i and V_j using all 64 electrodes

Partial area under ROC curves

Comparison of V_i and V_j using all 64 electrodes

Δ area from full electrode density

Δ area from 64 electrode area